
u.N CLAS L F'ED - ('"

SE 'P:'" CLASS' :$A 2'. r "', S PAc,[(W .e ",ar, niered) .

REPORT DOCUMENTATION PAGE ,'S o.2C ONS

1. REPO.,RT NBR Z. g,T ACCESSION NO. 3 RECIPIEhl 5 CATALOG NUMBER

4. TITLE (ad S l.rel 5. TYPE Of REPORT & PERIOD COVERED

Ada Compiler Validation Summary Report: Rational, 17 Au Z 1988 to 17 Auz 1989
A:_.Y.w, Version ?.i).-5, Rtion! Ri00O Series 200:Odt!l . PERFORING'DRG. REPORT NUMBER

anc .-.. _1 '. (:> _r aou (Tarcu.) 889815WI.091A3

7. AUTHORs) 8. CONTRACT or GRANT NUMBER(j)

V Writ-Patterson Air Force Base
Pa '.t'', ,DH, 7.*
7 PERFORMING ORGAN:ZATION AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

EAREA & WORK Uh:T NUMEERS

(i!t-Patter-;cr. Air Fcrc:e Base

" ~~~...... . : 'J).w

11. COhRO-LING OFCICE NAME AND ADDRESS 12. REPORT DATE

Ada Joint Program Office
United States Department of Defense 1j. NUM- LR UP F .L
Washington, DC 2b301-3081

14. MONITOR:NG AGENCY NAME & ADDRESS(Ifif ferent from Controlling Of ice) 15. SECURITY CLASS (ofthisteporl)

UNCLASSIFIED
'* Vri<:--aterson Air Force Base 15a. JZE.ASSFICATION,'DOWSRADING

Day:ton . , ,.' ,N/A

16. OISTR:BJTION STATEMENT (ofthiReporr)

Approved for public release; distribution unlimited.

17. DISTR:B7I01, STATEM'W'T (of the abs'ract entereedin Block 20 If d, He rent from Report)

UNCLASIFIEDDTIC
(LECTE ,

18. SUPP.EME-NTARY NOTES I 99S

19. KEYWORDS (Continue on reverse Side 1 necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABS T RAC T (Continue on reverse side ifnere$,ary and identify by block number)

?Fiional, VkX VMS, Version 2.0.45, lqright-Patterson Air Force Base, Rational R1000

Series " ,0 Moel 20 under D 10 9 10wps (Host) to VX2,'-11/750 under ",S, Version 4.5

(-ar;et), ACv: 1.9.

DD u 1473 EDITION oF 1 NO. 65 IS oBSOLE7E
I JAN 73 S/N 0102-LF-0,-6501 UNCLASSIFIED

SECJRI'Y CLASS:F1CAT1ION OF THIS PAGE (W4hen Oate Entered)

AVF Control Number: AVF-VSR-208.1188
88-05-31-RAT

Ada COMPILER

VALIDATION SUMMARY REPORT:

Certificate Number: 880815W1.09143
Rat icnal

VAX VMS, Version 2.0.45
Rational R1000 Series 200 Model 20 and VAX-11/750

Completion of On-Site Testing:
17 August 1988

I -

Prepared By:
Ada Validation Facilit y

ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington DC 20301-3081 A'I

Ada Compiler Validation Summary Report:

Compiler Name: VAXVMS, Version 2.0.45

Certificate Number: 880815W1.09143

Host: Target:
Rational R1000 Series 200 VAX-11/750 under
Model 20 under D_10_9_lOwps VMS, Version 4.5

Testing Completed 17 August 1988 Using ACVC 1.9

This report has been reviewed and is approved.

Ada Validation Facility
Steven P. Wilson

Technical Director

ASD/SCEL

Wright-Patterson AFB OH 454 3 3-6503

2, {

Ada Validation Organization

Dr. John F. Kramer

Institute for Defense Analyses

Alexandria VA 22311

Ada Jnt Program Office
Virginia L. Castor

Director
Department of Defense
Washington DC 20301

2

Ada Compiler Validation Summary Report:

Compiler Name: VAXVMS, Version 2.0.45

Certificate Number: 880815W1.09143

Host: Target:
Rational RIO00 Series 200 VAX-11/750 under
Model 20 under D_10_9_l0wps VMS, Version 4.5

Testing Completed 17 August 1988 Using ACVC 1.9

This report has been reviewed and is approved.

Ada Validation Facility
Steven P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Ada Validation Organizai

Dr. John F. Kramer
Institute for Defense An re
Alexandria VA 22311

Ada Joint Program Office
Virginia L. Castor
Director
Department of' Defense
,as:±1.gtzn TC 20301

2

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT1-2
1.3 REFERENCES1-3
1.4 DEFINITION OF TERMS1-3
1.5 ACVC TEST CLASSES 1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.2 IMPLEMENTATION CHARACTERISTICS 2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3.4 WITHDRAWN TESTS 3-2
3.5 INAPPLICABLE TESTS3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIDNS . . 3-4
3.7 ADDITIONAL TESTING INFORMATION3-5
3.7.1 Prevalidation 3-5
3.7.2 Test Method 3-5
3.7.3 Test Site3-6

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR- describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC)' An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must confcrm to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile

time, at link time, and during execution.

I-I

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

To attempt to identify any language constructs supported by the
comnriler that do not conform to the Ada Standard

a** pt to identify any language constructs not supported by
the compiler but required by the Ada Standa-d

To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc. under the
direction of the AVF according to procedures established by the Ada Joint
Program Office and administered by the Ada Validation Organization (AVO).
On-site testinz was completed 17 August 1983 at Rational, Santa Clara CA.

1.2 USE OF THIS VALIDATION SU-MARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

nhe organizations represented on the signature page of this report do not

-epresent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Cooies of this report are
available to the public from:

Ada Information Clearinghouse

Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

1-2

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACV' The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the
Commentary point addressed by a comment on the Ada Standard. These

comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical

1-3

INTRODUCTION

support for Ada validations to ensure consistent practices.

Compilcr A processor for the Ada language. In tne context of this
report, a compiler in any larguage processor, including
cross-compilers, translators, and interpreters.

Failed test An ACVZ test for which the compiler generates a result that

demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

napplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada

Standard. In the context of this report, the term is used to
dezignqte a single test, which may comprise one or more
files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and sfocial program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce compilation or link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. There are no explicit program components in a Class A test
to check semantics. For example, a Class A test checks that reserved words
of another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

1-4

INTRODUCTION

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FA:LED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,
or FAILED message when it i- compiled and executed. However, the Ada
Standard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class
E test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECK FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
-heck the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECKFILE is
che-cked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
unit3 are not operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and

1-5

INTRODUCTION

place features that may not be supported by all implementations in separate

tests. However, some tests contain values that require the test to be

custoJmized according to implementation-specific values--for example, an

illegal file name. A list of the values used for this validation is

provided in Appendix C.

A compiler must correctly process each of the tests in the suite and

demonstrate conformity to the Ada Standard by either meeting the pass

criteria given for the test or by showinF that the test is inapplicable to

the implementation. The applicability of a test to an implementation is

considered each time the implementation is validated. A test that is

inapplicable for one validation is not necessarily inapplicable for a

subsequent validation. Any test that was determined to contain an illegal

language construct or an erroneous language construct is withdrawn from the

A-VC and, therefore, is not used in testing a compiler. The tests

withdrawn at the time of this validation are given in Appendix D.

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was testcJi under the
following configuration:

Copiler: VAX VMS, Version 2.0.45

ACVC Version: 1.9

Certificate Number: 880815W1.09143

Host Computer:

Machine: Rational RI00O Series 200
Model 20

Operating System: D_10_9_10wps

Memory Size: 32 Megabytes

Target Computer:

Machine: VAX-11/750

Operating System: VMS, Version 4.5

Memory Size: 6 Megabytes

Communications Netwcrk: TCP/IP/ETHERNET

2-1

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

Capacities.

The compiler correctly processes tests containing loop statements
nested to 65 levels, block statements nested tc 65 levels, and
recursive procedures separately compiled as subunits nested to 10
levels. it correctly processes a compilation containing 723
variables in the same declarative part. (See tests D55AD3A..H (8
tests), D5601B, D64005E..G (3 tests), and D29002W.2

niversal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation processes 64 bit integer calculations. (See tests
DUA002A, D4A002B, D4AO04A, and D4A004B.)

Predefined types.

This implementation supports the additional predefined types
SHORT IN:EVEP, LONIFLOAT, and SHORTSHORT INTEGEF in the package
STANDARD. (See tests B86001C and B86001D.)

Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAX INT during compilation, or it may raise
WJMERIC ERROR or CONSTRAINT ERROR during execution. This
implementation rejects the test during compilation. (See test
E24!07A.)

Expression evaluation.

Apparently no defailt initialization expressions for record
components are eva" ated before any value is checkel to belong to
a component's subtype. (See test C32117A.)

Assignments for subtypes are performed with the same precision as
the base type. (See test C35712B.)

2-2

CONFIGURATION INFORMATION

This implementation uses no extra bits for extra precision. This
implementation uses all extra bits fcr extra range. (See test
C35903A.)

Sometimes NUMERIC ERROR is raised when an integer literal operand
in a comparison or membership test is outside the range of the
base type. (See test C45232A.)

Apparently NUMERIC ERROR is raised when a literal operand in a
fixed-point comparison or membership test is outside the range of
the base type. (See test C45252A.)

Apparently underflow is not gradual. (See tests C45524A..Z.)

Rounding.

The method used for rounding to integer is apparently round away
from zero. (See tests C46012A..Z.)

The method used for rounding to longest integer is apparently
round away from zero. (See tests C46012A..Z.)

The method used for rounding to integer in static universal real
expressions is apparently round away from zero. (See test
C4A0114A.)

Array types.

An implementation is allowed to raise NJMERI ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT. For this
implementation:

Declaration of an array type or subtype declaration with more than
SYSTEMYMAX INT components raises NUMERIC ERROR. (See test

C36003A.)

NUMERICERROR is raised when an array type with INTEGER'LAST + 2
components is declared. (See test C36202A.)

N'UMERICERROR is raised when an array type with SYSTEM.MAXINT + 2
components is declared. (See test C36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERTCERROR when the array type is declared. (See test
C52103X.)

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises NUMERICERROR when the array type is declared.
(See test C52104Y.)

2-3

CONFIGURATION INFORMATION

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINT ERROR either
when declared or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must match in array
sice assignments. This implementation raises WJMERICERROR when
the array type is declared. (See test E52103Y.)

In assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before CONSTRAINTERROR is raised
when checking whether the expression's subtype is compatible with

the target's subtype. In assigning two-dimensional array types,
the expression does not appear to be evaluated in its entirety
before CONSTRAINTERROR is raised when checking whether the
expression's subtype is compatible with the target's subtype.
(See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indicatiors. (See test
E38104A.)

In assigning record types with discriminants, the expression
appears to be evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52C13A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See ttiLs C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, not
all choices are evaluated before being checked for identical
bounds. (See test E43212B.)

CONSTRAINT ERROR is raised before all choices are evaluated when a
bound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test E43211B.)

Representation clauses.

An implementation might legitimately place restrictions on
representation clauses used by some of the tests. If a
representation clause is used by a test in a way that violates a
restriction, then the implementation must reject it.

2-4

CONFIGURATION INFORMATION

For this implementation:

Enumeration representation clauses containing noncontiguous values
for enumeration types other than character and boolean types are
supported. (See tests C35502I..J, C35502M..N, and A39005F.)

Enumeration representation clauses containing noncontiguous values
for character types are supported. (See tests C35507I..J,
C35507M..N, and C55B16A.)

Enumeration representation clauses for derived types are not

supported. (See tests C35508I..J and C35508M..N.)

Length clauses with SIZE specifications for enumeration types are
supported. (See test A39005B.)

Length clauses with STORAGE SIZE specifications for access types
are supported. (See tests A39005C and C87B62B.)

Length clauses with STORAGE SIZE specifications for task types are
supported. (See tests A39005D and C87B62D.)

Length clauses with SMALL specifications are supported. (See

tests A39005E and C87B62C.)

Record representation clauses are supported. (See test A39005G.)

Length clauses with SIZE specifications for derived integer types

are not supported. (See test C87B62A.)

Pragmas.

The pragma INLINE is not supported for procedures or functions.
(See tests LA3004A, LA3004B, EA3004C, EA3004D, CA3004E, and
CA3004F.)

Input/output.

The package SEQUENTIAL 10 can be instantiated with unconstrained
array types and record types with discriminants without defaults.
(See tests AE2101C, EE2201D, and EE2201E.)

The package DIRECT 10 cannot be instantiated with unconstrained
array types ar ' record types with discriminants without defaults.
(See tests AE21C!H, EE2401D, and EE2401G.)

Modes IN FILE and OUTFILE are supported for SEQUENTIALIO. (See
tests CE21O2D and CE21O2E.)

2-5

CONFTGURATION INFORMATION

Modes IN_FILE, OUTFILE, and INOUTF .E are supported for
DIRECT IO. (See tests CE2102F, CE2102I, and CE2102J.)

RESET and DELETE are supported for SEQUENTIALIO and DIRECT_IO.
(See tests CE2102G and CE2102K.)

Dynamic creation and deletion of files are supported for
SEQUENTIALIO and DIRECTIO. (See tests CE2106A and CE2106B.)

Overwriting to a sequential file truncates the file to last
element written. (See test CE2208B.)

An existing text file can be opened in OUT FILE mode, can be
created in OUT FILE mode, and cannot be created in IN-FILE mode.
(See test EE3102C.)

More than one internal file can be associated with each external
file for text Input/output for reading only. (See tests
CE3111A..E (5 tests), CE3114B, and CE3115A.)

More than one internal file can be associated with each external
file for sequential Input/output for reading only. (See tests
CE2107A..D (4 tests), CE2110B, and CE2111D.)

More than one internal file can be associated with each external

file for direct Input/output for reading only. (See tests
CE2107F..I (5 tests), CE2110B, and CE2111H.)

An internal sequential access file and an internal direct access
file cannot be associated with a single external file for writing.
(See test CE2107E.)

Temporary sequential files and temporary direct files are given
names. Temporary files given names are deleted when they are
closed. (See tests CE2108A and CE2108C.)

Generics.

Generic subprogram declarations and bodies can be compiled in

separate compilations. (See tests CA1012A and CA2009F.)

Generic package declarations and bodies can be compiled in

separate compilations. (See tests CA2009C, BC3204C, and BC3205D.)

Generic unit bodies and their subunits can be compiled in separate

compilations. (See test CA3011A.)

2-6

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.9 of the ACVC comprises 3122 tests. When this compiler was
tested, 27 tests had been withdrawn because of test errors. The AVF
determined that 345 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for 285
executable tests that use floating-point precision exceeding that supported
by the implementation. Modifications to the code, processing, or grading
for 76 tests were required to successfully demonstrate the test objective.
(See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 108 1049 1520 15 14 44 2750

Inapplicable 2 2 333 2 4 2 345

Withdrawn 3 2 21 0 1 0 27

TOTAL 113 1053 1874 17 19 46 3122

3-1

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

2 3 4 5 6 7 8 9 10 11 -2 13 14

Passed 184 465 490 245 165 98 141 326 131 36 23- 3 232 2750

Inapplicable 20 107 184 3 1 0 2 1 6 0 0 0 21 345

Withdrawn 2 14 3 0 0 1 2 0 0 0 2 1 2 27

TOTAL 206 586 677 248 166 99 145 327 137 36 23' 4 255 3122

3.4 WITHDRAWN TESTS

The following 27 tests were withdrawn from ACVC Version 1.9 at the time of
this validation:

B28003A E28005C C34004A C35502P A35902C
C35904A C35904B C35AO3E C35AO3R C37213H
C37213J C37215C C37215E C37215G C37215H

C38102C C41402A C45332A C45614C A741060
C85013B C87B04B CC1311B BC3105A ADlA01A
CE2401H CE3208A

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 345 tests were inapplicable for the
reasons indicated:

C35508I..J (2 tests) and C35508M..N (2 tests) use enumeration

representation clauses for derived types. These clauses are not
supported by this compiler.

C35702A uses SHORTFLOAT which is not supported by this
implementation.

3-2

TEST INFORMATION

A39005G uses a record representation clause which attempts to pack
a record component that is of an array subtype, and such a record
representation clause is not supported by this compiler.

The following tests use LONG INTEGER, which is not supported by
this compiler:

C45231C C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45631C C45632C
B52004D B55B09C C55BO7A

C45531M, C45531N, C45532M, and C45532N use fine 48-bit fixed-point
base types which are not supported by this compiler.

C455310, C45531P, C455320, and C45532P use coarse 48-bit
fixed-point base types which are not supported by this compiler.

C4AO13B uses a static value that is outside the range of the most
accurate floating-point base type. The declaration was rejected
at compile time.

D4A004B uses a numeric literal greater than SYSTEM.MAXINT which

is not supported by this compiler.

D64005G uses nested procedures as subunits to a level of 17, which
exceeds the capacity of the compiler.

C86001F redefines package SYSTEM, but TEXT 10 is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package

TEXTIO.

C87B62A uses length clauses with SIZE specifications for derived
integer types which are not supported by this compiler.

C96005B requires the range of type DURATION to be different from
those of its base type; in this implementation they are the same.

CA3004E, EA3004C, and LA3004A use the INLINE pragma for
procedures, which is not supported by this compiler.

CA3004F, EA3004D, and LA3004B use the INLINE pragma for functions,
which is not supported by this compiler.

AE2101H, EE2401D, and EE2401G use instantiations of package
DIRECT 10 with unconstrained array types and record types having
discriminants without defaults. These instantiations are rejected

by this compiler.

CE2105A..B (2 tests) and CE3109A attempt to create a file of mode
INFILE. Creation of an external file with mode IN FILE is not
supported by this compiler.

3-3

TEST INFORMATION

CE2107B..E (4 tests), CE2107G..I (3 tests), CE2110B, CE2111D,

CE2111H, CE3111B..E (4 tests), and CE3114B are inapplicable
because multiple internal files cannot be associated with the same

external file for both read and write and for write only. The

proper exception is raised when multiple access is attempted.

The folowing 285 tests require a floating-point accuracy that

exceeds the maximum of 9 digits supported by this implementation:

C24113F..Y (20 tests) C35705F..Y (20 tests)
C35706F..Y (20 tests) C35707F..Y (20 tests)

C35708F..Y (20 tests) C35802F..Z (21 tests)
CU5241F..Y (20 tests) C45321F..Y (20 tests)

). 5421F..Y (20 tests) C45521F..Z (21 tests)
C4552:4F. .Z (21 tests) C45621F..Z (21 tests)
C45641F..Y (20 tests) C46012F..Z (21 tests)

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will requirp modifications of code,

processing, or evaluation in order to compensate for legitimate

implementation behavior. Modifications are made by the AVF in cases where

legitimate implementation behavior prevents the successful completion of an

(otherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting

a Class B test into subtests so that all errors are detected; and

confirming that messages produced by an executable test demonstrate
conforming behavior that wasn't anticipated by the test (such as raising

one exception instead of another).

Modifications were required for 76 Class B tests.

The following Class B tests were split because syntax errors at one point

resulted in the compiler not detecting other errors in the test:

B22003A B22004A B22004B B22004C B23004A

B23004B B24001A B24001B B24001C B24005A

B214005B B24007A B24009A B24204A B24204B

B24204C B25002B B26001A B26002A 326005A
B28003C B29001A B2AO03A B2A0O3B B2AO03C

B2AO07A B32103A B33201B B33202B B33203B
B33301A B35101A B36002A B36201A B37201A
B37205A B37307B B38003A B38003B B38009A

B38009B B41201A B41202A B44001A B44004B

B44004C B45205A B48002A B48002D B51001A
B51003A B51003B B53003A B55AO1A B64001A

B64006A B67001A B67001B B67001C B67001D

B74003A B91001H B91003B B95001A B95003A

3-4

H~nm mm mm m| n now

TEST INFORMATION

B95004A B95079A B97101A BB3005A BC1303F
BC2001D BC2001E BC3003A BC3003B BC3005B
BC3013A

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced by
the VAX VMS compiler, Version 2.0.45, was submitted to the AVF by the
applicant for review. Analysis of these results demonstrated that the
compiler successfully passed all applicable tests, and the compiler
exhibited the expected behavior on all inapplicable tests.

3.7.2 Test Method

Tes ing of the VAX VMS compiler, Version 2.0.45, using ACVC Version 1.9 was
conducted on-site by a validation team from the AVF. The configuration
consisted of a Rational R1000 Series 200 Model 20 host operating under
D 10 9 l0wps, and a VAX-11/750 target operating under VMS, Version 4.5.
The host and target computers were linked via TCP/IP/ETHERNET.

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the
magnetic tape. Tests requiring modifications during the prevalidation
testing were included in their modified form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host
computer. After the test files were loaded to disk, the full set of tests
was compiled and linked on the Rational R1000 Series 200 Model 20, and all
executable tests were run on the VAX-11/750. Object files were linked on
the host computer, and executable images were transferred to the target
computer via TCP/IP/ETHERNET. Results were printed from the host computer,
with results being transferred to the host computer via TCP/IP/ETHERNET.

The compiler was tested using command scripts provided by Rational and
reviewed by the validation team. The compiler was tested using all default
switch settings except for the following:

3-5

TEST INFOPMATION

Switch Effect

CreateSubprogram Specs = False Separate subprogram
specification is not
generated automatically.

Remote Directory Denotes directory on
"sys$sysroot:[rational. the target into which
crud.acvc.report]" files should be

automatically downloaded.

RemoteMachine = "shemp" Denotes the VAX target
machine.

OptimizationLevel = 4 Sets optimization to an
intermediate level.

Tests were compiled, linked, and executed (as appropriate) using a single
host computer and a single target computer. Test output, compilation
listings, and job logs were captured on magnetic tape and archived at the
AVF. The listings examined on-site by the validation team were also
archived.

3.7.3 Test Site

Testing was conducted at Rational, Santa Clara CA and was completed on 17
August 198B.

3-6

APPENDIX A

DECLARATION OF CONFORMANCE

Rational has submitted the following Declaration of
Conformance concerning the VAXVMS compiler, Version
2.0.45.

A-1

DECLARATION OF CONTORMANCE

Compiler Implerentor: Rational

Ada® Validation Facility: ASD/SCEL, Wright-Patterscn AFB, OH 45433-65C3

Ada Compiler Validation Capability (ACVC) Version: 1.9

Base Configuration

Base Comz4iler Name: VAX VMS Version: 2.C.45
Host Architecture: R-CC Operatirg System: DiC_9_0wps

Target Architecture: DEC VAX Cperatin S ystem7: VMS 4.5
DE: VAX Ii/75?

Implementor's Declaration

1, the undersigned, representing Rational, have implemented no deliberate extensions to the Ada Language Standard
ANSI/,iIL-STD-1815A in the compiler listed in this declaration. I declare that Rational is the owner of record of
the Ad- language compiler listed above and, as such, is responsible for maintaining said compiler in conformance to
A.NSI,,/M1IL-STD-18i5A. All certificates and regiszrauons for the Ada language compiler lsted in this declaration
shall be made only in the owner's corporate name.

cAJ'2K~it~iDate:
Wa2ter A. WlIac- h, Manaaer, Pcftware Test

Owner's Declaration

1. the undersigned, representng Rational, take full responsibilir, for the implementaon and maintenance of the Ada
comrnler listed above, and agree to the public disclosure of the final Validation Summary Report. I further aZr'e to
continue to comply with the Ada trademark policy, as defined by the Ada Joint Program Office. I declare that all of
the Ada language compilers Listed, and their host~target performance are in compliance with the Ada Language
Standard AINSIMIL-STD-1815A.

'6A3'0 QK 'j Date:
A.er A. laa , Manager, S ftware Test

/ /~fwr

ida is a rrgistered trademark of the Uruted Sttes Govenrnim t (Ada Join: Program Office.

is the registered trademark of Raucmnal.

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragias, to certain machine-dependent conventions as mentioned in
chapter 13 of the Ada Standard, and to certain allowed restrictions on
representation clauses. The implementation-dependent characteristics of
the VAXVMS compiler, Version 2.0.45, are described in the following
sections, taken from Appendix F of the Ada Standard.
Implementation-specific portions of the package STANDARD are also included
in this appendix.

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;
type SHORT INTEGER is range -32768 .. 32767;
type SHORTSHORTINTEGER is range -128 .. 127;

type FLOAT is digits 6 range -1.70141173319264E+38 1.70141173319264E+38;
type LONGFLOAT is digits 9 range

-1.70141183460469E+38 .. 1.70141183460469E+38;

type DURATION is delta 6.10351562500000E-05 range
1.31072000000000E+05 .. 1.31071999938965E+05;

end STANDARD;

B-i

Appendix F for the Rational Vax/VMS Cross Compiler

1. Implementation-Dependent Pragmas

The VaxNVMS Cross-Compiler supports pragmas for application software development in addition to those listed i
Appendix B of the Reference Manualfor the Ada Programming Language. They are described below, along with
additional clanfications and restrctions for pragmas defined in Appendix B of the Reference Manualfor the Ada
Programming Language.

1.1. Pragma Main

A pararneterless library unit procedure can be designated as a main program by including a pragma Main at the end
of the specification or body of the unit. This pragma causes the linker L., run and create an executable program when
the body of this subprogram is coded. Before a unit having a pragma Main can be coded, all units in the transitive
with-closure of the unit m ust be coded.

The pragma Main has arguments that can control the way the linker builds the executable program.

Stack Size: This argument takes a static-integer-expression as parameter it specifies the size, in bytes, of
the main task stack. If not specified, the default value is 4K bytes. The value must lie in the range 256..

HeapSize: This argument takes a static-integer-expression as parameter, it specifies the size, in bytes, of
the heap. The value must lie in the range 0 .. 23 1-1. If not specified, the default value of the Heap Size is
64K bytes.

The complete syntax for this pragma is:

pragna _main :- PRAGMA MAIN

[(mainoption [, main-option I

main_option ::- STACKSIZE -> static integer expression j
HEAPSIZE -> static_integer expression

The pragma Ma in must appear immeviiatly following the declaration or body of a parameterless lixary unit
procedure.

1.2. Pragrna Nickname

The pragma Nickname can be used to give a unique string name to a procedure or function besides its normal Ada
name. It can be used to disambiguate overloaded procedures or functioms in the importing and exporting pragmas
defined in subsequent wtxxm&

The pragma Nickname must appear inmediately followipg the declaration for which it is to provide a nickname.
It has a single argument, the nickname, which must be a string constant.

For example (pragma IrmortFunction is described fully in a subsequent secton):

function Cat (L: Integer; R: String) return String;
pragmaa Nickname ("Int-Str-Cat");

function Cat (L: String; R: Integer) return String;

B-?

pragma Nickname (CStr-Int-Cat");

pragma Interface (Assembly, Cat);

pragma Import-Function (Cat, Nickname -> "Int-Str-Catm,
External -> "CAT$INTSTRCONCAT",
Mechanism > (Value, Reference));

pragma ImportFunction (Cat, Nickname -> "Str-Int-Cat",
External -> "CAT$STRINTCONCAT",
Mechanism -> (Reference, Value',);

1.3. Importing and Exporting Subprograms

A subprogram written in another language (typically, assembly language) can be called from an Ada program if it is
declared with a pragma Interf ace. The rules for placement of pragma Interface are given in section 13.9 of
the Reference Manualfor the Ada Programming Language. Every interfaced subprogram must have an Vax/VMS
cross-compiler defined importing pragma, either the pragma ImportProcedure or the pragna
ImportFunction. These pragmas are used to declare the external name of the subprogram and the parameter
passing mechanism for the subprogram call.

A subprogram written in Ada can be made accessible to code writen in another language by using an Vax/VMS
cross-compiler defined exporting pragma. The effect of such a pragnma is to given the subprogram a defined
symbolic name that the linker can use when resolving references between object modules.

The importing and exporting pragmas can only be applied to nongeneric procedures and functions.

1.3.1. Subprogram Importing Pragmas

The pragmas ImportProcedure, ImportFunction, and ImportValuedProcedure are used for
importing subprograms. A pragma Interface must precede one of these import pragmas, otherwise, the
placement rules for these pragmas ae identical to those of the lragma Interface.

The importing pragmas have the form:

importingpragma :- PRAGMA importing type
INTERNAL ->] internalname

EXTERNAL -> I external name]
PARAMETERTYPES -> I parametertypes
RESULTTYPE ->] typemark] I

NICKNAME-> stringliteral]
MECHANISM-> I mechanisms

importingtype ::- IMPORTPROCEDURE I IMPORT_FUNCTION I
IMPORTVALUEDPROCEDURE

internal-name :- identifier I
string_literal -- An opezator designator

externalname ::- identifier I string_literal

parameter types :- (NULL) I (type-mark { , type_mark)

B-3

mechanisms :- mechanism-name I
mechanism-name { , mechanism name

mechanism name ::- VALUE I REFERENCE I DESCRIPTOR (S)

The internal name is the Ada name of the subprogram being interfaced. If there is more than one subprogram in the
declarative region, preceeding the importing pragma, then the correct subprogram must be identified using either the
argument types (and resut type, if a function) or specifying the nickname.

If used to disambiguate an overloaded internal name, the value of the Parameter_Types argument consists of a
list of type or subtype names, not names of parameters. Each one corresponds, positionally, to a formal parameter in
the subprogram's declaration. If the subprogram has no parameters then the list consists of the single word nuII.
In the case of a function, the value of the Result_Type argument is the name of the type or subtype returned by
the function.

The external designator, specified with the External parameter, is a character string which is an identifier suitable
for the Vax/VMS assembler. If the external designator is not specified, then the internal name is used.

The argument Mechanism is required if the subprogram has any parameters. It specifies in a parenthesized list the
passing mechanism for each parameter to be passed. The passing mechanism may be one of Value, Reference,
or Descriptor (S). For functions, it is not possible to specify the passing mechanism of the function resultk the
standard Ada mechanism for the given type of the function result must be used by the interfaced subprogram. If
there is one or more parameters, and they all use the same passing mechanism, then an alternate form for the
Mechanism parameter may be used: Instead of a parenthesized list with an element for each parameter, the single
mechanism name (not parenthesized) may be used insteaL

Examples:

procedure Locate (Source: in String;
Target: in String;
Index: out Natural);

pragma Interface (Assembler, Locate);
pragma ImportProcedure

(Locate, "STR$LOCATE",
ParameterTypes -> (String, String, Natural),
Mechanism -> (Reference, Reference, Value));

function Pwr (I: Integer; N: Integer) return Float;
function Pwr (F: Float; N: Integer) return Float;

pragma Interface (Assembler, Pwr);
pragma Ixport Function

(Internal -> Pwr,
ParameterTypes -> (Integer, Integer),
ResultType -> Float,
Mechanism -> Value,

External -> "MATHSPWROFINTEGER");
pragra ImportFunction

(Internal -> Pwr,
ParameterTypes -> (Float, Integer),
ResultType -> Float,
Mechanism -> Value,

External -> "MATHSPWROFFLOAT");

B-4

131. Subprogram Exporting Pragmas

The pragmas Export-Procedure and ExportFunction are used to make an Ada subprogram available to
external code in a diffaent language by defining a global symbolic name that the linker can use.

An exporting pragma can be given only for subprograms which are library units, or are declared in the outermost
declarative part of a library package. An exporting pragma can be placed after a subprogram body only if the
subprogram either doesn't have a separate specification or the specification is in the same declarative part as the
body. Thus, an exporting pragma can't be applied to the body of a library subprogram which has a separate
specification. An exporting pragma cannot be given for a generic library subprogram, or for a subprogram declared
in a generic library package.

These pragmas have similar arguments to the importing pragmas, except that iL is not possible to specify the
parameter passing mechanism. The standard Ada parameter passing mechanisms are choosen. For descriptions of
the pragrna's arguments, Internal, External, Parameter Types, Result_Type, and Nickname, see
the preceeding section on the importing pragmas.

The full syntax of the pragmas for exporung subprograms is:

exportingpragma :- PRAGMA exporting type
INTERNAL -> I internal-name

[EXTERNAL ->] external name I
[PARAMETERTYPES -> I parameter types]
[RESULT_TYPE ->] typemark]

NICKNAME-> string literal 3 3) ;

exporting-type ::- EXPORTPROCEDURE I EXPORTFUNCTION

internal-name : identifier I
string-literal -- An operator designator

externalname ::- identifier I string_literal

parametertypes :: (NULL) I (typejmark I , typejmark I

Examples:

procedure Matrix Multiply
(A, B: in Matrix; C: out Matrix);

pragma ExportProcedure (MatrixMultiply) ;
-- External name is the string "MatrixMultiply"

functiA43in (R: Radians) return Float;
pragma lxport_Function

(Internal -> Sin,
External -> "SIN RADIANS");

-- External name is the string "SINRADIANS"

1.4. Importing and Exporting Objects

Objects can be imported or exported from an Ada unit with the pragmas ImportObject and
Export Object. The pragma ImportObject makes an Ada name refeence storage declared and allxated
in some exral (no-Ada) object module. The pragma ExportObject provides an objc declared within an

B-5

Ada unit with an externally available symbolic name that the linker can use to put Iogether a program with modules
writen in some other language. In any case, it is the responsibility of the programmer to insure that the internal
stture of the object is such that the non-Ada code or data layout matches; such checks cannot be performed by the
cross-compiler.

The object to be imported or exported must be a variable declared at the outermost level of a library package
specification or body.

Ih size of the object must be static, thus the type of the object must be one of:

* A scalar type (or subtype).

* An array subtype with static index constraines whose component size is static.

• A simple record type or subtype.

Objects of a private or limited private t)pe can be imported or exported only into the package that declares the type.

Imported objects cannot have an initial value, and thus cannot be:

* constant.

* An access pe.

* Atasktype.

* A record type with discriminants, or with components with default initial expressions, or with components
which are access types or task types.

Finally, the object must not be in a generic unit-

The external name specified must be suitable for an identifier in the assembler.

The full syntax for the pragmas import-Object and Export-Object is

objectpragma - PRAGMA objectpragmatype
INTERNAL ->] identifier

EXTERNAL->] stringliteral]

object_pragma type : IMPORTOBJECT I EXPORTOBJECT

1.5. Pragma Suppress_All

This pragrna, is equivalem to the following sequerce of pragnmas:

pragma Suppress (AccessCheck);
pragma Suppress (DiscriminantCheck);
pragna Suppress (DivisionCheck);
pragma Suppress (ElaborationCheck);
pragnma Suppress (IndexCheck);
pragma Suppress (Length Check) ;
pragma Suppress (OverflcwCheck);
pragma Suppress (RangeCheck);
pragrnA Suppress (Storage-Check);

B-6

Note tha, just as pragma Suppress, the SuppressAll pragma cannot prevent the raising of certain
exceptions. For example, numeric overflow or dividing by zero is detected by the hardware, which results in the
predefined exception NumericError being raised. Refer to Chapter 7, "Run-TIme Organization", for more
information.

The pragma Suppress_All must appear immediately within a declarative par.

2. Iuplementation-Dependent Attributes

There are no implementation-dependent attributes.

3. Package System

package System is

type Name is (DecVax);

System-Name constant Name :- DecVax;
Storage_Unit constant :- 8;
Memory_Size constant : 2 ** 31 - 1;

Min Int constant :- -(2 ** 31);
Max Int constant :- +(2 ** 31) - 1;

MaxDigits : constant :- 9;
Max Mantissa : constant :- 31;
Fine Delta : constant :- 2.0 ** (-31);
Tick : constant :- 1.OE-2;

subtype Priority is Integer range 1 254;

type Address is private;

function "+ (Left : Address; Right Integer) return Address;
function "+ (Left : Integer; Right Address) return Address;
function "-" (Left : Address; Right : Address) return Integer;
function "-" (Left : Address; Right : Integer) return Address;

function "<" (Left, Right : Address) return Boolean;
function 3<-" (Left, Right : Address) return Boolean;
function >" (Left, Right : Address) return Boolean;
function >- (Left, Right : Address) return Boolean;

AddressZero : constant Address;

generic
type Target is private;

function FetchFromAddress (A Address) return Target;

generic
type Target is private;

procedure Assign To Address (A Address; T : Target);

B-7

type TypeClass is (TypeClass_Enumeration, Type_ClassInteger,
TypeClassFixedPoint, TypeClassFloating_Point,
TypeClassArray, TypeClass_Rezord,

Type_ClassAccess,
TypeClassTask, TypeClassAddress);

type FFloat is digits 6;
type DFloat is digits 9;

type AstHandler is limited private;
NoAstHandler : constant AstHandler;

type BitArray is array (Integer range <>) of Boolean;
Pragma Pack (Bit Array) ;

subtype BitArray_8 is BitArray (0 7);
subtype BitArray_16 is Bit Array (0 15);
subtype BitArray_32 is BitArray (0 31);
subtype BitArray_64 is BitArray (0 63);

type Unsigned-Byte is range 0 .. 255;

function "not" (Left : Unsigned Byte) return UnsignedByte;
function "and" (Left, Right : UnsignedByte) return UnsignedByte;
function "or" (Left, Right : UnsignedByte) return UnsignedByte;
function "xor" (Left, Right : Unsigned_Byte) return UnsignedByte;

function ToUnsignedByte (Left : BitArray_8) return UnsignedByte;
function ToBit_Array_8 (Left : Unsigned-Byte) return BitArray_8;

type Unsigned Byte Array is array (Integer range <>) of UnsignedByte;
pragma Pack (UnsignedByteArray) ;

type UnsignedWord is range 0 .. 65535;

function "not" (Left : UnsignedWord) return UnsignedWord;
function "and" (Left, Right : UnsignedWord) return UnsignedWord;
function "or" (Left, Right : Unsigned Word) return UnsignedWord;
function "xor" (Left, Right : UnsignedWord) return UnsignedWord;

function ToUnsigned-Word (Left BitArray_16) return UnsignedWord;
function ToBitArray_16 (Left Unsigned-Word) return BitArray_16;

type Unsigned_ WordArray is array (Integer range <>) of UnsignedWord;
pragma Pack (UnsignedWordArray);

type UnsignedLongword is range MinInt .. MaxInt;

function "not" (Left : Unsigned Longword) return UnsignedLongword;
function "and" (Left, Right Unsigned Longword) return UnsignedLongword;
function "or" (Left, Right Unsigned-Longword) return UnsignedLongword;
function "xor" (Left, Right UnsignedLongword) return UnsignedLongword;

function ToUnsignedLongword
(Left : BitArray_32) return UnsignedLongword;

function ToBitArray_32 (Left : UnsignedLongword) return BitArray_32;

B-8

type Unsigned LongwordArray is
array (Integer range <>) of UnsignedLongword;

type UnsignedQuadword is
record

LO : Unsigned Longword;
Li : UnsignedLonawcrd;

end record;

function "not" (Left : UnsignedQuadword) return UnsignedQuadword:
function "and" (Left, Right UnsignedQuadword) return UnsignedQuadword;
function "or" (Left, Right UnsignedQuadword) return Unsigned Quadword;
function "xor" (Left, Right UnsignedQuadword) return UnsignedQuadword;

function ToUnsignedQuadword
(Left : BitArray_64) return Unsigned__Quadword;

function ToBitArray_64 (Left : UnsignedQuadword) return BitArray_64;

type Unsigned._QuadwordArray is
array (Integer range <>) of UnsignedQuadword;

function ToAddress (X : Integer) return Address;
function ToAddress (X : UnsignedLongword) return Address;

function ToInteger (X : Address) return Integer;
function ToUnsignedLongword (X : Address) return UnsignedLongword;

subtype Unsigned_1 is UnsignedLongword range 0 2 ** 1 - 1;
subtype Unsigned_2 is UnsignedLongword range 0 2 ,, 2 - 1;
subtype Unsigned_3 is UnsignedLongword range 0 2 ** 3 - 1;
subtype Unsigned_4 is UnsignedLongword range 0 2 '" 4 - 1;
subtype Unsigned__5 is UnsignedLongword range 0 2 ** 5 - 1;
subtype Unsigned__6 is UnsignedLongword range 0 2 "* 6 - 1;
subtype Unsigned _7 is UnsignedLongword range 0 2 '* 7 - 1;
subtype Unsigned_8 is UnsignedLongword range 0 2 ** 8 - 1;
subtype Unsigned_.9 is UnsignedLongword range 0 2 '" 9 - 1;
subtype Unsigned__10 is UnsignedLongword range 0 2 ** 10 - 1;
subtype Unsigned__11 is UnsignedLongword range 0 2 ** 11 - 1;
subtype Unsigned__12 is Unsigned__Longword range 0 2 ** 12 - 1;
subtype Unsigned__13 is UnsignedLongword range 0 2 * 13 - 1;
subtype Unsigned_14 is UnsignedLongword range 0 2 ** 14 - 1;
subtype,.Usigned_15 is UnsignedLongword range 0 2 ** 15 - 1;
subtype Vniqgned_16 is Unsigned Longword range 0 2 16 - 1;
subtype Un7igned_17 is Unsigned_-Longword range 0 2 *" 17 - 1;
subtype Unidqned_18 is UnsignedLongword range 0 2 ** 18 - 1;
subtype Unsigned_19 is UnsignedLongword range 0 2 ** 19 - 1;
subtype Unsigned_20 is UnsignedLongword range 0 2 *' 20 - 1;
subtype Unsigned_21 is UnsignedLongword range 0 2 ** 21 - 1;
subtype Unsigned_22 is UnsignedLongword range 0 2 '* 22 - 1;
subtype Unsigned_23 is UnsignedLongword range 0 2 '* 23 - 1;
subtype Unsigned_24 is UnsignedLongword range 0 2 * 24 - 1;
subtype Unsigned_25 is UnsignedLongword range 0 2 " 25 - 1;
subtype Unsigned__26 is UnsignedLongword range 0 2 ** 26 - 1;
subtype Unsigned_27 is UnsignedLongword range 0 2 '* 27 - 1;
subtype Unsigned_28 is UnsignedLongword range 0 2 ** 28 - 1;
subtype Unsigned_29 is UnsignedLongword range 0 2 '* 29 - 1:

B-9

subtype Unsigned 30 is Unsigned Longword range 0 .. 2 ** 30 - 1;
subtype Unsigned_31 is UnsignedLongword range 0 .. 2 ** 31 - 1;

private

end Sy3tem;

4. Restrictions on Representation Clauses

4.1. Length clauses

Size specifications are allowed only on discrete types that are not derived types. There are no restrictions on
specifications of collection size or task activation size. SmaUll may be specified for a fixed point type so long as it is
a power of two that does not exceed the given delta and still permits representation of all necessary values, and so
long as the fixed point type is not a derived type.

4.2. Enumeration Representation Clauses

Enumeration representation clauses are not permitted on derived enumeration types.

4.3. Record Representation Clauses

A record field can consist of any number of bits between 1 and 32 inclusive; otherwise it must be an integral number
of 8-bit bytes. There are no other restrictions on record field specifications.

4.4. Address Clauses

Address clauses are not supporteL

5. Names denoting implementation-dependent components

There are no implementation dependent components that can be named in representation clauses,

6. Interpretation of expressions that appear in address clauses

Address clauses are not supported.

7. Unchecked conversion

The target type of an unchecked conversion cannot be an unconsmained ay type or an muconstrained discriminated
type.

B-10

8. Implementation dependent characteristics of the input output packages

8.1. The generic packages Sequentialio and DirectIo

DirectIo may only be instantiated with constrained types.

The implementation of Sequent ia 1Io creates VMS RIMS variable-length-record record-oriented files for

unconstrained types and fixed-length-record record-oriented files for constrained types. DirectIo always
creates fixed-length-record record-oriented files. All files are created with the carriage return carriage control

atribute and use the VMS RMS sequential organization. There is a one-to-one correspondence between internal file

elements and external file records. Thus, ElementType' size is limited to 32767 bytes by the VMS RMS 1/0
system. The implementation can read files in these formats only.

The in=.er type DirectIo. Count is defined to have an upper bound of Integer' last. However, because

of limitations of the VMS RMS I/O system, the actual limit is 512 * integer' last /

element_type' size.

The Form parameter is ignored on Open and Create calls.

Input and output files are not buffered beyond that provided by VMS RMS.

The implementation does not support having the same external file open for both input and output via two different

internal files or having the same external file open for writing via two different internal files. Temporary files are

named, but a single temporary file cannot be shared by two or more different internal files.

Use Error is raised when a Create is attempted with the mode InFile. Read does not perform the extra

checks that might rise DataError foir values inapproprate for the element type.

When ceaing a file, the default pmtections of the containing directory are used. The inplementaton does not
examine the previous version of the file to use its protection.

8.2. The package Text_10

The integer type Text_Io. Count is defined to have an upper bound of 1_000_000_000. However, this isn't

practicaL The VMS RMS 1/0 system limits record length to 32767 bytes for disk files and 255 bytes for terminals.

TextIo. Field has the sane nge as type Standard.Natural.

The implementation of Text Io aretes VMS RMS variable-length-record record-oriented files with carriage

return carriage control ribuaes. VMS RMS stream files are not created for outut files. In these files, each record
corresponds U) on Tex Ijo line. A page terminator is represented by an ASCII .FF either as the first charater or

the last character oft record. ASCII. FF characters embedded within records except as the first or last character of

the record are not pop trmtinstm The page terminator at the end of the file is implicit, there is no ASCII. FF in
the file to repment it TextIo ca read either record-oriented files or stream-mented files.

For the file Standard Input, if the logical name ADA$ INPUT is defined then it is opened, otherwise

SYSS INPUT is opened. If SYS$ INPUT isn't defined (if, for example, the program was spawned by the RUN

command) then NULL: is ued (NULL: is the standard VMS file name for the bit-bucket, when used as an input

file it returns end-of-file immediately.)

For the file Standard Output, if a logical name ADA$OUTPUT is defined then it will be used as the name of the

file to be created, otherwise SYS$OUTPUT is used.

The FORM pamer i ignored an Open and Create calls.

B-11

Output to a terminal is not buffered. Output to files is buffered, but as part of (normal or abnormal) program
trmination the Ada runmes call TextIo norder to flush e buffes of allf hey can be closed without
the loss of information.

The implementation of TextIo does not support having the same exterr file open for both input and output via
two different internal files (Text_Io. FileType) or having the same external file open for writing via two
different internal files.

When creating a file, the default protections of the containing directory are used. Text_Io does not examine the
previous version of the file to use its protection.

9. Standard package

package Standard is

type *Universal_Integer* is (universalinteger];
type *UniversalReal* is (universalreal];
type *UniversalFixed* is [universalfixed];

type Boolean is (False, True);

type Integer is range -2147483648 .. 2147483647;
type ShortShortInteger is range -128 .. 127;
type ShortIntegeL is range -32768 .. 32767;

type Float is digits 6
range -1.70141173319264E+38 . .70141173319264E+38;

type Long-Float is digits 9
range -1 .70141183460469E+38 .. .70141183460469E+38;

type Duration is delta 6.10351562500000E-05
range -1.31072000000000E+05 . .31071999938965E+05;

subtype Natural is Integer range 0 2147483647;

subtype Positive is Integer range 1 2147483647;

type String is array (Positive range <>) of Character;
pragma Pack (String);

package Ascii is

end Ascii;

Constraint Error : exception;
NumericError exception;

Storage_Error exception;
TaskingError exception;
ProgramError exception;

type Character is ...

end Standard;

B-12

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value

$BIG IDI (l..253 => 'A', 254 => '1')
Identifier the size of the
maximum input line length with
varying last character.

$BIG ID2 (1..253 => 'A', 254 => '2')
Identifier the size of the
maximum input line length with
varying last character.

$BIGID3 (l..126 => 'A', 127 => '3',
Identifier the size of the 128..254 => 'A')
maximum input line length with
varying middle character.

$BIG ID4 (l..126 => 'A', 127 => '4',
Identifier the size of the 128..254 => 'A')
maximum input line length with
varying middle character.

$BIGINTLIT (1..251 => '0', 252..254 => "298")
An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

C-1

TEST PARAMETERS

Name and Meaning Value

$BG- REAL LIT (1..248 = '0', 249...254 = "69.0E ")

A universal real literal of
value 690.0 with enough leading

zeroes to be the size of the
maxi: um line length.

$ B' STING1 (1..127 => 'A')

A string literal which when

catenated with BIG _SM'ING2

yields the image of BIGIDI.

SBIG STRING2 (1..126 => 'A', 127 => '1')

A string literal which when
catenated to the end of

BIG STRING1 yields the image of

BIGIDI.

BLANKS (1..234 :> '=

A sequence of blanks twenty

characters less than the size

of the maximum line length.

$COUNT LAST 1000000000

A universal integer

literal whose value is

TEXTIO.COUN?'LAST.

SIELD LAST 2147483647

A universal integer

literal whose value is

TEXT IO.FIELD'LAST.

$FILE NAME WITH BAD CHARS BADCHARACTERS&<>=

An external file name that

either contains invalid

characters or is too long.

$FILENAME WITH WILD CARD CHAR WILDCARDS*

An external file name that

either contains a wild card
character or is too long.

SYPEATERTHAN DURATION 0.0

A universal real literal that

lies between DURATION'BASE'LAST
and DURATION'LAST or any value

in the range of DURATION.

C-2

TEST PARAMETERS
*

Name and Meaning Value

$3REATERTHANDURATION BASE LAST 2.0E05
A universal real literaT that is

greater than DURATION'BASE'LAST.

$7' LGALA EXTERNAL .FITE NAME1 BADCHARACTERS&<>=

An external file name which

contains invalid characters.

$ThLEGAL EXTERNAL FILE NAME2 STRING'1..10O=>'A')&TRING31'..100=>'A')

An external file name which &STRING'(1..10=>'A',

is too long.

$:N:EGERFIRST -2147483648

A universal integer literal

whose value is INTEGER'FIRST.

tINTEGERLAST 2147483647

A universal integer literal
whose value is INTEcER'LAST.

$I'1TEGEPLASTPLUS 1 2147483648

A universal integer literal
whose value is INTEGER'LAST + 1.

sLESS THAN DURATION 0.0

A universal real literal that

lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value

in the range of DURATION.

$LESSTHANDURATIONBASE FIRST -2.0E05

A universal real literal that is

less than DURATION'BASE'FIRST.

$MAXDIGITS 9

Maximum digits supported for
floating-point types.

tMAX IN LEN 254

Maximum input line length
permitted by the implementation.

$YAX IN: 2147483647
universal integer literal

whose value is SYSTEM.MAXINT.

$AXINTPLUS_1 2147483648

A universal integer literal
whose value is SYSTEMMAXINT+1.

C-3

TEST PARAMETERS

Name and Meaning Value

$MAX LENINT BASED-LITERAL (1..2 = "2:", 3..251 = '0',

A universal integer based 252..254 0"11:")

literal whose value is 2#11#

with enough leading zeroes in

the mantissa to be MAX IN LEN

long.

SMAX LEN REAL BASED LITERAL (I .3 => "16", 4 250 0 '0',

A universal real based literal 251..254 => "F.E:")

whose value is 16:F.E: with

enough leading zeroes in the

mantissa to be MAXINLEN long.

$MAX STRING LITERAL (1 = '"', 2..253 = 'A', 254 => '"')

A string literal of size

MAX IN LEN, including the quote

characters.

SV:N I : -2147483648

A universal integer literal

whose value is SYSTEM.MININT.

$NAME SHORT_SHORTINTEGER

A name of a predefined numeric

type other than FLOAT, INTEGER,

SHORT FLOAT, SHORT INTEGER,

LONIFLOAT, or LONG-INTEGER.

$NEGBASED INT 16#FFFFFFFFFFFFFFFE#

A based integer literal whose

highest order nonzero bit

falls in the sign bit

position of the representation
for SYSTE,.MAXINT.

C-4

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
kda Standard. The following 27 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
"AI-ddddd" is to an Ada Commentary.

B28003A: A basic declaration (line 36) incorrectly follows a

later declaration.

E28005C: This test requires that "PRAGMA LIST (ON);" not

appear in a listing that has been suspended by a previous
"PRAGMA LIST (OFF);"; the Ada Standard is not clear on this
point, and the matter will be reviewed by the AJPO.

C3400A: The expression in line 168 yields a value outside

the range of the target type T, but there is nc handler for
CONSTRAINTERROR.

C35502P: The equality operators in lines 62 and 69 should be

inequality operators.

A35902C: The assignment in line 17 of the nominal upper
bound of a fixed-point type to an object raises
CONSTRAINT ERROR, for that value lies outside of the actual
range of the type.

C35904A: The elaboration of the fixed-point subtype on line
28 wrongly raises CONSTRAINTERROR, because its upper bound
exceeds that of the type.

C35904B: The subtype declaration that is expected to raise
CONSTRAINT ERROR when its compatibility is checked against
that of various types passed as actual generic parameters,
may, in fact, raise NUMERIC ERROR or CONSTRA:NTERROR for
reasons not anticipated by the test.

D-1

WITHDR.WN TESTS

C35AO3E and C35AO3R: These tests assume that attribute
'MANTISSA returns 0 when applied to a fixed-point type with a
null range, but the Ada Standard does not support this
ass3mption.

C37213H: The subtype declaration of SCCNZ in line 100 is
incorrectly expected to raise an exception when elaborated.

C372i3J: The aggregate in line 451 incorrectly raises
CONSTRAINTERROR.

C37215C, C37215E, C37215G, and C37215H: Various discriminant
constraints are incorrectly expected to be incompatible with
type CONS.

C38102C: The fixed-point conversion on line 23 wrongly

raises CONSTRAINTERROR.

C41402A: The attribute 'STORAGE SIZE is incorrectly applied
to an object of an access type.

C45332A: The test expects that either an expression in line
52 will raise an exception or else MACHINEOVERFLOWS is
FALSE. However, an implementation may evaluate the
expression correctly using a type with a wider range than the
base type of the operands, and MACHINEOVERFLOWS may still be
TRUE.

C45614C: The function call of IDENTINT in line 15 uses an
argument of the wrong type.

A74106C, C85018B, C87BO4B, and CC1311B: A bound specified in
a fixed-point subtype declaration lies outside of that
calculated for the base type, raising CONSTRAINT ERROR.

Errors of this sort occur at lines 37 & 59, 142 & 143, 16 &
48, and 252 & 253 of the four tests, respectively.

BC3105A: Lines 159 through 168 expect error messages, but
these lines are correct Ada.

AD1A01A: The declaration of subtype SINT3 raises
CONSTRAINT ERROR for implementations which select INT'SIZE to
be 16 or greater.

CE2401H: The record aggregates in lines 105 anr 117 contain
the wrong values.

CE320SA: This test expects that an attempt to open the
default output file (after it was closed) with mode INFILE
raises NAMEERROR or USEERROR; by Commentary AI-00048,
MODE ERROR should be raised.

D-2

